
PowerShell Quick Reference
Version 20191223

Common cmdlets useful for remote triage
Cmdlet Description
Get-ADComputer Query Active Directory for computer account information. This

cmdlet is found on domain controllers or can be manually added
to a workstation.

Get-ADUser Query information about domain user accounts. This cmdlet is
auto-downloaded on domain controllers; it can be manually
added to a workstation.

Get-ChildItem List the items in a location, like a directory or a registry key.

Get-CIMInstance Access CIM instances from a CIM server. This is the preferred
way to access WMI/MI information.

Get-Content Retrieve the actual contents of an object, like a file.

Get-EventLog The older PowerShell way to access event logs. Get-

WinEvent should be used instead.

Get-HotFix Retrieve information about updates.

Get-ItemProperty Retrieve properties, including the values of registry keys.

Get-LocalUser Get information about local user accounts.

Get-NetTCPConnection Query network connection information for TCP.

Get-NetUDPEndpoint Query network connection information for UDP.

Get-Process List information about running processes.

Get-Service List information about services.

Get-WinEvent Retrieve information from event logs.

Get-WMIObject The older PowerShell way to access WMI objects. Get-

CIMInstance is usually preferable.

ForEach-Object Iterate over a loop for each item.

Start-Transcript Record a transcript of this session to a text file, which is a great
way to keep a record of your actions.

Stop-Transcript Stop a previously started transcription.

PowerShell Quick Reference
Version 20191223

Common cmdlets useful for filtering and formatting results
Cmdlet Description
Where-Object Filters the objects returned to only those that match the condition

specified. Example:

Get-Process | Where-Object name -eq svchost

Select-Object Modifies the objects returned by selecting only some of their
properties. Use to reduce the type of information displayed about
each object. Example:

Get-Process | Select-Object ProcessName, Id

Sort-Object Sorts objects returned in ascending (default) or descending (if
specified) order based on the property(ies) specified. Example:

Get-ChildItem | Sort-Object Length -Descending

Group-Object Displays object in groups based on the value of the specified
property(ies). The number of items in each group are shown in the
Count field.Example:

Get-Process | Group-Object Name

Measure-Object Provides counts related to the number of objects provided.
Calculates the minimum, maximum, sum and average of numeric
values. Calculates the number of lines, words and characters in text
results. Example:

Get-NetTCPConnection | Where-Object -Property state

-eq Listen | Measure-Object

Format-Table Displays the specified properties as a table. Example:

Get-ChildItem | Format-Table -Property name,

LastAccessTime, LastWriteTime, CreationTime

Format-List Displays the specified properties as a list, avoiding truncating data.
Example:

Get-Process | Format-List -Property name, path

Export-Csv Exports data to a file (location specified with -Path parameter) in a

comma separated value format (the delimiter can optionally be
changed). Example:

Get-Process | Export-Csv -Path "processes.csv"

Out-File Save the output to a file, specified by the -FilePath parameter).

Example:

Get-Process | Out-File E:\capture\process.txt

Out-GridView Opens a new window where the output is displayed in a spreadsheet-
like view. The column widths can be adjusted. Columns can be
hidden and reordered. Data can be sorted based on specified
column. Built in filtering support is also provided. Example:

Get-Process | Out-GridView

PowerShell Quick Reference
Version 20191223

PowerShell Remoting
For one-to-one remoting, use the Enter-PSSession cmdlet:

Enter-PSSession -ComputerName Server1 -Credential admin@company.demo

For one-to-many remoting use Invoke-Command cmdlet:

Invoke-Command -ComputerName server1, server2, server3 -ScriptBlock {Get-Process |

Where-Object -Property name -eq vmtoolsd}

The -ComputerName parameter expects either a single computer name or an array of computer names.

In the example above, we simply provide each computer name in a comma comma-separated list. More

complex methods can be used, including providing the output of another cmdlet such as Get-

ADComputer or using a variable to which an array of computer names has already been stored.

The -ScriptBlock parameter expects a PowerShell command enclosed within braces. This command

will be executed on each remote system specified in the -ComputerName parameter. By default, the

results are returned to the system where Invoke-Command was run. A field called PSComputerName is

added by Invoke-Command to illustrate which of the remote systems provided each line of the response.

PowerShell for Event Log Queries
Moderns Windows Event Logs are stored in a binary XML structure. Within the EventData XML element,

there are numerous <Data> tags. For example, <Data Name="LogonType">2</Data> shows that the

logon type is 2, meaning an interactive logon (as we described in our Event Log Analyst Reference).

Using the Get-WinEvent cmdlet, we can filter on these specific data elements in order to retrieve only

the event log records that match specific criteria which we set. To do so, we first create a query using an

XPath expression and then call that query using the Get-WinEvent cmdlet with the -FilterXML

parameter. To complete the first step, open a text editor and create a file named query.xml. In that file

we will generate a query list with specific queries of interest to us. For example, the following query

requests only Event ID 4624 where the target username is example_user:

<QueryList>

 <Query Id="0">

 <Select Path="Security">

 *[EventData[Data[@Name='TargetUserName'] and Data='example_user']]

 and

 *[System[(EventID=4624)]]</Select>

 </Query>

</QueryList>

To execute this query, once we have saved the query itself to the query.xml file, we run the following

Get-WinEvent command:

Get-WinEvent -FilterXml ([xml](Get-Content .\query.xml))

